Structure of Tris(*p*-fluorophenyl)triphosphorus Trisulphide

By MICHAEL R. LEGEYT and NORMAN L. PADDOCK*

(Department of Chemistry, University of British Columbia, 2075 Wesbrook Place, Vancouver, B.C., Canada V6T 1W5)

Summary The structure of the title compound is based on a five-membered ring containing a P-P bond, not on a sixmembered ring as previously supposed.

TRIPHENYLTRIPHOSPHORUS TRISULPHIDE, Ph3P3S3, occupies a key position in organophosphorus-sulphur chemistry, being easily converted by sulphur addition¹ or sulphur abstraction² into $Ph_2P_2S_4$ (four-membered ring)¹ or Ph_4P_4S (five-membered ring).^{2,3} The originally suggested tetrameric formula⁴ was later corrected;⁵ among several possible structures, the most reasonable seemed to be that based on a six-membered ring of alternating phosphorus and sulphur atoms.⁵ Other workers have suggested that the molecule contains a P₃ ring, the sulphur atoms being bound exocyclically.⁶ We have now prepared the analogous $(p-FC_6H_4)_3P_3S_3$, whose higher solubility makes it easier to study. Its ¹⁹F n.m.r. spectrum consists of three distinct multiplets of equal area, at -3.2, -3.7, and -6.9 p.p.m. relative to internal fluorobenzene, indicating three inequivalent fluorophenyl groups. The ³¹P spectrum is of the ABX type,

 δ_{A} -36.8, δ_{B} -24.2, and δ_{X} +45.7 p.p.m. relative to external P_4O_6 , J_{AB} 245 Hz. The magnitude of J_{AB} indicates a direct P-P bond, the structure shown being confirmed by a strong i.r. band at 673 cm⁻¹, attributed to

v(P=S). Triphenyltriphosphorus trisulphide itself has a similar band at 648 cm⁻¹, and evidently has the same skeletal structure. The P₃S₃ unit is identical to one of the rings in P_4S_5 ,⁷ and the basic (P_2)(SPS) ring is also found in $\mathrm{P}_4\mathrm{S}_3,^8$ $\mathrm{P}_4\mathrm{S}_7,^9$ and both forms of $\mathrm{P}_4\mathrm{S}_3\mathrm{I}_2.^{10}$

We are grateful to the National Research Council of Canada for financial support and for an N.R.C. Scholarship (to M.R.L.).

(Received, 15th October 1974; Com. 1283.)

- ¹ L. Maier, *Helv. Chim. Acta*, 1963, 46, 1812.
 ² H. P. Calhoun, M. R. LeGeyt, N. L. Paddock, and J. Trotter, *J.C.S. Chem. Comm.*, 1973, 623.
 ³ H. P. Calhoun and J. Trotter, *J.C.S. Dalton*, 1974, 386.
 ⁴ W. Kuchen and H. Buchwald, *Chem. Ber.*, 1958, 91, 2296.
 ⁵ D. W. Malal D. D. Bach, *J. Chem. Sci.*, 1964, 5594.

- K. W. Abel, D. A. Armitage, and R. P. Bush, J. Chem. Soc., 1964, 5584.
 M. Baudler, K. Kipker, and H. W. Valpertz, Naturwiss., 1967, 54, 43.

- ⁷ S. van Houten and E. H. Wiebenga, Acta Cryst., 1957, 10, 156.
 ⁸ S. van Houten, A. Vos, and G. A. Wiegers, Rec. trav. Chim., 1955, 74, 1167.
- ⁹ A. Vos and E. H. Wiebenga, Acta Cryst., 1956, 9, 92.
- ¹⁰ R. D. Topsom and C. J. Wilkins, *J. Inorg. Nuclear Chem.*, 1956, **3**, 187; G. J. Penney and G. M. Sheldrick, *J. Chem. Soc.* (A), 1971, 1100; G. W. Hunt and A. W. Cordes, *Inorg. Chem.*, 1971, **10**, 1935.